
Unstructured Data Analysis

George Chen

Lecture 13: Time series analysis with recurrent
neural nets (RNNs), how learning a neural net

works, dealing with small datasets, course wrap-up

Time Series (“Sequential”) Data

What we’ve seen so far are “feedforward” NNs

Time Series (“Sequential”) Data

What we’ve seen so far are “feedforward” NNs

What if we had a video?

… …

Time 0

Time 1

Time 2

Feedforward NN’s:
treat each video frame

separately

Recurrent Neural Nets
Feedforward NN’s:

treat each video frame
separately

… …

RNNs:
feed output at previous

time step as input to
RNN layer at current

time step

Time 0

Time 1

Time 2
In PyTorch, different

RNN options, such as:
RNN (vanilla),
LSTM, GRU

Recurrent Neural Nets

RNN layerTime series

Feedforward NN’s:
treat each video frame

separately

RNNs:
feed output at previous

time step as input to
RNN layer at current

time step

In PyTorch, different
RNN options, such as:

RNN (vanilla),
LSTM, GRU

Vanilla ReLU RNN

current_state = np.zeros(num_nodes)

for input in input_sequence:

linear = np.dot(input, W) \
 + np.dot(current_state, U) \
 + b

output = np.maximum(0, linear) # ReLU

Parameters: weight matrices W & U, and bias vector b

Key idea: it’s like a linear layer in a for loop that tracks how
memory changes over time

memory that evolves over time; we want to learn how it changes

current_state = output

W is a 2D table: # rows:
(length of single time step’s input),

cols: num_nodes

b is a 1D table:
num_nodes entries

U is a 2D table:
num_nodes by
num_nodes

Recurrent Neural Nets

like a linear layer
that has memory

RNN layer

readily chains together with
other neural net layers

Time series

does not incorporate
image structure!!!

Feedforward NN’s:
treat each video frame

separately

RNNs:
feed output at previous

time step as input to
RNN layer at current

time step

In PyTorch, different
RNN options, such as:

RNN (vanilla),
LSTM, GRU

Recurrent Neural Nets

RNN layer

readily chains together with
other neural net layers

CN
N

Time series

like a linear layer
that has memory

does not incorporate
image structure!!!

Feedforward NN’s:
treat each video frame

separately

RNNs:
feed output at previous

time step as input to
RNN layer at current

time step

In PyTorch, different
RNN options, such as:

RNN (vanilla),
LSTM, GRU

Recurrent Neural Nets

RNN layer

readily chains together with
other neural net layers

CN
N

Time series

Cl
as

sifi
er

like a linear layer
that has memory

does not incorporate
image structure!!!

Use CNN to
incorporate image

structure!

Feedforward NN’s:
treat each video frame

separately

RNNs:
feed output at previous

time step as input to
RNN layer at current

time step

In PyTorch, different
RNN options, such as:

RNN (vanilla),
LSTM, GRU

Conv2d,
ReLU

Max
Pool
2d

Conv2d,
ReLU

FlattenMax
Pool
2d

Conv2d,
ReLU

Max
Pool
2d

Conv2d,
ReLU

FlattenMax
Pool
2d actually, intermediate

representations close
to the last layer are

also similar!

(intuition: recall the crumpled
paper analogy!)

Recurrent Neural Nets

RNN layer

readily chains together with
other neural net layers

CN
N

Time series

Cl
as

sifi
er

like a linear layer
that has memory

does not incorporate
image structure!!!

Use CNN to
incorporate image

structure!

Feedforward NN’s:
treat each video frame

separately

RNNs:
feed output at previous

time step as input to
RNN layer at current

time step

In PyTorch, different
RNN options, such as:

RNN (vanilla),
LSTM, GRU

Recurrent Neural Nets

RNN layerTime series

Cl
as

sifi
er

Conv2d,
ReLU

Max
Pool
2d

Conv2d,
ReLU

FlattenMax
Pool
2d

Same CNN applied to each frame separately

Recurrent Neural Nets

RNN layer

readily chains together with
other neural net layers

CN
N

Time series

Cl
as

sifi
er

like a linear layer
that has memory

does not incorporate
image structure!!!

Use CNN to
incorporate image

structure!

Feedforward NN’s:
treat each video frame

separately

RNNs:
feed output at previous

time step as input to
RNN layer at current

time step

In PyTorch, different
RNN options, such as:

RNN (vanilla),
LSTM, GRU

Recurrent Neural Nets

RNN layer

Text Positive/negative
sentiment

Example: Given text (e.g., movie review, Tweet), figure out whether it has
positive or negative sentiment (binary classification)

Common first step for text:
turn words into vector
representations that are
semantically meaningful

Cl
as

sifi
er

(Flashback) Do Data Actually Live on
Manifolds?

Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/word-
embeddings-994x675.png

Recurrent Neural Nets

RNN layer

Text Positive/negative
sentiment

Example: Given text (e.g., movie review, Tweet), figure out whether it has
positive or negative sentiment (binary classification)

Common first step for text:
turn words into vector
representations that are
semantically meaningful

In PyTorch, use the
Embedding layer

Em
be

dd
in

g

Cl
as

sifi
er

Linear layer (2 nodes),
Softmax activation

Word index Word 2D Embedding
0 this [-0.57, 0.44]
1 movie [0.38, 0.15]
2 rocks [-0.85, 0.70]
3 sucks [-0.26, 0.66]

Sentiment Analysis with IMDb Reviews

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of
word indices into the vocab

Word index Word
0 this
1 movie
2 rocks
3 sucks

“this movie rocks”

“this movie sucks”

0 1 2

0 1 3

“this sucks” 0 3

Ordering of words
matters

Different reviews
can have different

lengths
Step 3: Use word embeddings to represent each word

Word index Word 2D Embedding
0 this [-0.57, 0.44]
1 movie [0.38, 0.15]
2 rocks [-0.85, 0.70]
3 sucks [-0.26, 0.66]

Sentiment Analysis with IMDb Reviews

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of
word indices into the vocab

Word index Word
0 this
1 movie
2 rocks
3 sucks

Step 3: Use word embeddings to represent each word
“this movie sucks”

[-0.57, 0.44]
[0.38, 0.15]
[-0.26, 0.66]

0 1 3

Sentiment Analysis with IMDb Reviews

[-0.57, 0.44]
[0.38, 0.15]
[-0.26, 0.66]

[-0.57, 0.44]
[0.38, 0.15]
[-0.26, 0.66]

Em
be

dd
in

g“this movie sucks”

0 1 30 1 3

Sentiment Analysis with IMDb Reviews

[-0.57, 0.44]

[0.38, 0.15]

[-0.26, 0.66]

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g

0

1

3

“this movie sucks”

Sentiment Analysis with IMDb Reviews

[-0.57, 0.44]

[0.38, 0.15]

[-0.26, 0.66]

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g

0

1

3

“this movie sucks”

Lo
gi

st
ic

Re

gr
es

si
on

Sentiment Analysis with IMDb Reviews

[-0.57, 0.44]

[-0.26, 0.66]

Em
be

dd
in

g
Em

be
dd

in
g

0

3

“this sucks”

Lo
gi

st
ic

Re

gr
es

si
on

RNN’s work with variable-length inputs

Note: Often in text analysis, the word embeddings are treated as
fixed, so we do not update them during training

What if we didn’t use word
embeddings?

Word index Word 2D Embedding
0 this [-0.57, 0.44]
1 movie [0.38, 0.15]
2 rocks [-0.85, 0.70]
3 sucks [-0.26, 0.66]

Sentiment Analysis with IMDb Reviews

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of
word indices into the vocab

Word index Word
0 this
1 movie
2 rocks
3 sucks

Step 3: Use word embeddings to represent each word
“this movie sucks”

[-0.57, 0.44]
[0.38, 0.15]
[-0.26, 0.66]

0 1 3

Word index Word One-hot encoding
0 this [1, 0, 0, 0]
1 movie [0, 1, 0, 0]
2 rocks [0, 0, 1, 0]
3 sucks [0, 0, 0, 1]

Bad Strategy: One-Hot Encoding

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of
word indices into the vocab

Word index Word
0 this
1 movie
2 rocks
3 sucks

“this movie sucks”

[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 0, 1]

0 1 3
Step 3: Use one-hot encoding to represent each word

This strategy tends to work poorly in practice:
distance between every pair of words is the same

in one-hot encoding!

Recap/Important Reminder

• Neural nets are not doing magic; incorporating structure is very
important to state-of-the-art deep learning systems

• Word embeddings encode semantic structure—words with
similar meaning are mapped to nearby Euclidean points

• CNNs encode semantic structure for images—images that are
“similar” are mapped to nearby Euclidean points

• An RNN tracks how what’s stored in memory changes over time
— an RNN’s job is made easier if the memory is a semantically
meaningful representation

Word index Word 2D Embedding
0 this [-0.57, 0.44]
1 movie [0.38, 0.15]
2 rocks [-0.85, 0.70]
3 sucks [-0.26, 0.66]

Sentiment Analysis with IMDb Reviews

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of
word indices into the vocab

Word index Word
0 this
1 movie
2 rocks
3 sucks

Step 3: Use word embeddings to represent each word
“this movie sucks”

[-0.57, 0.44]
[0.38, 0.15]
[-0.26, 0.66]

0 1 3

In the demo, this part
done by creating an

instance of the
SpacyEncoder Python
class (torchnlp does

support other encoders as
well in case you don’t like
spacy/spacy is giving you

trouble)

embedding_weights (100-dimensional GloVe embeddings in the demo)

Sentiment Analysis with IMDb Reviews

Demo

A special kind of RNN: an “LSTM”

(Flashback) Vanilla ReLU RNN

current_state = np.zeros(num_nodes)

for input in input_sequence:

linear = np.dot(input, W) \
 + np.dot(current_state, U) \
 + b

output = np.maximum(0, linear) # ReLU

current_state = output

Parameters: weight matrices W & U, and bias vector b

Key idea: it’s like a linear layer in a for loop that tracks how
memory changes over time

(Flashback) Vanilla ReLU RNN

for input in input_sequence:

linear = np.dot(input, W) \
 + np.dot(current_state, U) \
 + b

output = np.maximum(0, linear) # ReLU

current_state = output

outputs = []

outputs.append(output)

current_state = np.zeros(num_nodes)

RNN layerTime series

output prediction

… …

Time 0

Time 1

Time 2

output prediction 1

output prediction 0

output prediction 2

… …

Time
t − 1

Time t

Time
t + 1

output t

output t − 1

output t + 1

outputs[t]
= np.maximum(np.dot(input_sequence[t], W)
 + np.dot(outputs[t-1], U)
 + b, 0)

Vanilla RNN tends to
forget things quickly

…

… …

Time
t − 1

Time t

Time
t + 1

output t

output t − 1

output t + 1

Long-term memory

… Add explicit long-term
memory!

But need some way to
update long-term

memory!

… …

Time
t − 1

Time t output t

output t − 1

Long-term memory

… Add explicit long-term
memory!

But need some way to
update long-term

memory!

Time
t − 1

Time t output t

output t − 1

Long-term memory

… Add explicit long-term
memory!

But need some way to
update long-term

memory!

… …

Time
t − 1

Time t output t

output t − 1

Long-term memory

… Add explicit long-term
memory!

But need some way to
update long-term

memory!

… …

Long-term memory
updater

Called a “long short-term
memory” (LSTM) RNN

Remembers things longer
than vanilla RNN

Analyzing Times Series with CNNs

• Think about an image with 1 column, and where the rows index
time steps: this is a time series!

• Think about a 2D image where rows index time steps, and the
columns index features: this is a multivariate time series (feature
vector that changes over time!)

• CNNs can be used to analyze time series but inherently the size of
the filters used say how far back in time we look

• If your time series does not have long-range dependencies that
require long-term memory, CNNs can do well already!

• If you need long-term memory, use RNNs

Other Deep Learning Topics

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

tangent line

The skier should move rightward (positive direction)

initial guess of good
parameter setting

The skier wants to get to the lowest point

∆L
∆w

The derivative at the skier’s position is negative
∆w

∆L
∆w

In general: the skier should move in opposite direction of derivative
In higher dimensions, this is called gradient descent
(derivative in higher dimensions: gradient)

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

Victory!

Local minimum Better
solution

In general: not obvious what error landscape looks like!
➔ we wouldn’t know there’s a better solution beyond the hill

In practice: local minimum often good enough

Popular optimizers
(e.g., Adam, RMSProp,

Lookahead) are
variants of gradient

descent

Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

f1 f2

L

�All parameters:

Automatic differentiation is crucial in learning deep nets!

Careful derivative chain rule calculation: back-propagation

A neural net
does function
composition!

xi

yi

f1(xi) f2(f1(xi))

L(f2(f1(xi)), yi)

1
n

n∑

i=1

L(f2(f1(xi)), yi)

Overall loss:

Gradient: ∂
1
n

∑n
i=1 L(f2(f1(xi)), yi)

∂θ

Gradient Descent

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

average loss

compute gradient

We have to compute lots
of gradients to help the
skier know where to go!

Computing gradients using
all the training data seems

really expensive!
and move skier

Stochastic Gradient Descent (SGD)

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

An epoch refers to 1 full pass through
all the training data

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Minibatch Gradient Descent

average loss

compute gradient
and move skier

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Minibatch Gradient Descent

average loss

compute gradient
and move skier

Batch size: how many
training examples we

consider at a time
(in this example: 2)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Best optimizer? Best learning rate? Best # of
epochs? Best batch size?

Active area of research

Depends on problem, data, hardware, etc

Example: even with a GPU, you can get slow learning (slower than
CPU!) if you choose # epochs/batch size poorly!!!

Dealing with Small Datasets

Data Augmentation
Generate perturbed versions of your training data to get a larger

training dataset

Training label: cat
Training image Mirrored

Still a cat!
Rotated & translated

Still a cat!

We just turned 1 training example in 3 training examples

Allowable perturbations depend on data
(e.g., for handwritten digits, rotating by 180
degrees would be bad: confuse 6’s and 9’s)

Fine Tuning
If there’s an existing pre-trained neural net, you could modify it for

your problem that has a small dataset

Example: classify between Tesla’s and Toyota’s

You collect photos from the internet of both, but your dataset size is
small, on the order of 1000 images

Strategy: take pre-trained convnet (such as the state-of-the-art ResNet) for
ImageNet classification and change final layers to do classification between

Tesla’s and Toyota’s instead of classifying 1000 objects

Fine Tuning

Sentiment analysis RNN demo

Text Positive/negative
sentiment

Em
be

dd
in

g

Cl
as

sifi
er

Weights here are treated as fixed & come from
pre-trained GloVe word embeddings

GloVe vectors pre-trained on massive dataset (Wikipedia + Gigaword)
IMDb review dataset is small in comparison

For more, check out the recording of
the Pittsburgh lecture next week!

Unstructured Data Analysis

Data

The dead body

Some times you
have to collect
more evidence!

Finding Structure InsightsQuestion

When? Where?
Why? How?
Perpetrator
catchable?

Puzzle solving,
careful analysis

The evidence

This is provided
by a practitioner Exploratory data

analysis
Answer original

question

There isn’t always a follow-up prediction problem to solve

Some Parting Thoughts
• Remember to visualize steps of your data analysis pipeline

• Very often there are tons of models/design choices to try
• Come up with quantitative metrics that make sense for your

problem, and use these metrics to evaluate models (think about
how we chose hyperparameters!)

• Often times you won’t have labels! If you really want labels:
• Manually obtain labels (either you do it or crowdsource)
• Set up “self-supervised” learning task (in Pittsburgh last lecture)

• Helpful in debugging & interpreting intermediate/final outputs

• But don’t blindly rely on metrics without interpreting results in
the context of your original problem!

• There is a lot we did not cover — keep learning!

Want to Learn More?

• One of the best ways to learn material is to teach it!
Apply to be a TA for me next term!

• I posted a Canvas announcement some days ago with follow-up
courses that are related to unstructured data analysis

