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Time Series ("Sequential”) Data

What we've seen so far are "feedforward” NNs




Time Series ("Sequential”) Data

What we've seen so far are "feedforward” NNs

What if we had a video!



Feedforward NN's:
treat each video frame
Time O > > separately
Time | > >
Time 2 > >
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Recurrent Neural Nets

Feedforward NN's:
treat each video frame
separately

RNNs:
feed output at previous
1:|me step as Input to

g " RNIN layer at current
time step
fime series RNN layer In PyTorch, different
RNN options, such as:
RNN (vanilla),

LSTM, GRU



Vanilla ReLU RNN

memory that evolves over time; we want to learn how It changes

‘— -------------------

-current state = np.zeros(num nodes)

Wis a 2D table: # rows:
(length of single time step’s Thput),
# cols: num nodes

for input 1n 1nput sequence:
{'

linear = np.dot(input, W) ~

+ np dOt(Current state, -U) \ U is a2 2D table:

" b'k \num_nodes by
, , num nodes
output np.maximum(®, linear) # RelU __

bisa |ID table:

current state = output num nodes entries

Parameters: weight matrices W & U, and bias vector b

Key idea: it’s like a linear layer in a for loop that tracks how
memory changes over time
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Recurrent Neural Nets

Feedforward NN's:
treat each video frame

. . , separately
readily chains together with

other neural net layers

RNNS:

«| feed output at previous

% = time step as input to

O s RNN layer at current

o time step
fime series RNN layer In PyTorch, different
Use CNN to ike a linear layer RNN options, such as:
incorporate image that has memory RNN (vanilla),
structure! does not incorporate LSTH, GRU

image structure!!!



Conv2d, Max Conv2d, Max Flatten
RelU Pool RelU Pool
2d 2d

Conv2d, Max Conv2d, Max Flatten
RelU Pool RelU Pool
2d 2d



Recurrent Neural Nets

Feedforward NN's:
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Time series

Recurrent Neural Nets

Conv2d, Max Conv2d, Max Flatten
RelU Pool RellU Pool
2d 2d

Same CNN applied to each frame separately

N layer

Classifier




Recurrent Neural Nets

Feedforward NN's:
treat each video frame

. . , separately
readily chains together with

other neural net layers

RNNS:

«| feed output at previous

% = time step as input to

O s RNN layer at current

o time step
fime series RNN layer In PyTorch, different
Use CNN to ike a linear layer RNN options, such as:
incorporate image that has memory RNN (vanilla),
structure! does not incorporate LSTH, GRU

image structure!!!



Recurrent Neural Nets

Example: Given text (e.g., movie review, weet), figure out whether it has
positive or negative sentiment (binary classification)

Positive/negative

Text —» — .
sentiment

Classifier

Common first step for text:
turn words Into vector
representations that are RNN layer

semantically meaningful
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Recurrent Neural Nets

Example: Given text (e.g., movie review, weet), figure out whether it has
positive or negative sentiment (binary classification)

o]
- -
or— Q) o .
o = Positive/negative
Text —» |O|—> % .
v © sentiment
= O
Common first step for text: Linear layer (2 nodes),

turn words Into vector Softmax activation
representations that are RNIN fayer
semantically meaningful

In Py lorch, use the
Embedding layer



Sentiment Analysis with IMDDb Reviews

Step |: Tokenize & build vocabulary

‘ 1, Word index Word 2D Embedding
- 0 | this  [-0.57,044]
= ] || movie  [0380.5]
Training reviews 2 i OCkS _________ -0.85,0./70]
3 sucks | [-0.26,0.66

Step 2: Encode each review as a sequence of

Ordering of words word indices Into the vocab

matters “this movie rocks” —> 012
Different reviews “this movie sucks” —> Ol 3
can have different i o - 03

Iengths TNIS sSUCKS

Step 3: Use word embeddings to represent each word



Sentiment Analysis with IMDDb Reviews

Step |: Tokenize & build vocabulary

= Word index Word 2D Embedding
= 0| this  [057,044]
= ] || movie = [0380.15
Training reviews 2 rocks  [085,0.70]
3 sucks | [-0.26,0.66

Step 2: Encode each review as a sequence of
word Indices into the vocab

“this movie sucks’ —> Ol 3

Step 3: Use word embeddings to represent each word

-0.57, 0.44]
10.38,0.15]
2026, 0.66]



Sentiment Analysis with IMDDb Reviews

“this movie sucks”

013 —

-0.57, 0.44]
10.38,0.15]
12026, 0.66]

Embedding]




Sentiment Analysis with IMDDb Reviews

-0.57, 0.44]

O
7| [Embedding|

Embedding||Embedding

“this movie sucks”

10.38,0.15]

| —>

12026, 0.66]




Sentiment Analysis with IMDDb Reviews

> >

-0.57, 0.44]

O
7| [Embedding|

Embedding||Embedding

“this movie sucks”

10.38,0.15]

| —>

12026, 0.66]

Logistic
Regression




Sentiment Analysis with IMDDb Reviews

o]
.C
= [-0.57,0.44]

O —»|©T >
: )
=
LL]

“this sucks” @' v S

- s

3 O [-0.26, 0.66] . .| 0| —
< o &
= 9
— oY

RNN's work with variable-length inputs

Note: Often In text analysis, the word embeddings are treated as
fixed, so we do not update them during training



What if we didn’t use word
embeddings!?



Sentiment Analysis with IMDDb Reviews

Step |: Tokenize & build vocabulary

= Word index Word 2D Embedding
= 0| this  [057,044]
= ] || movie = [0380.15
Training reviews 2 rocks  [085,0.70]
3 sucks | [-0.26,0.66

Step 2: Encode each review as a sequence of
word Indices into the vocab

“this movie sucks’ —> Ol 3

Step 3: Use word embeddings to represent each word

-0.57, 0.44]
10.38,0.15]
2026, 0.66]



Bad Strategy: One-Hot Encoding

Step |: Tokenize & build vocabulary

= Word index | Word One-hot encoding
= O this [ L0001 .
U= . |.movie [0100]
Training reviews . 2 rocks | 0,0, 1,0]
3 sucks 0,0,0, |
Step 2: Encode each review as a sequence of
word Indices Into the vocab
“this movie sucks” —> 013
Step 3: Use one-hot encoding to represent each word

This strategy tends to work poorly in practice: 1,0,0,0]

distance between every pair of words Is the same 0, 1,0,0]

in one-hot encoding! 0,0,0, I]



Recap/Important Reminder

* Neural nets are not doing magic; incorporating structure is very
important to state-of-the-art deep learning systems

* Word embeddings encode semantic structure—words with
similar meaning are mapped to nearby Euclidean points

* CNNs encode semantic structure for images—Iimages that are
“similar’” are mapped to nearby Euclidean points

* An RNN tracks how what's stored in memory changes over time

— an RNN’s job is made easier if the memory is a semantically
meaningful representation



embedding weights (|100-dimensional GloVe embeddings in the demo)

Sentiment Analysis with IMDDb Reviews

In the demo, this part
done by creating an
instance of the
SpacyEncoder Python
class (torchnlp does
support other encoders as
well In case you don't like
spacy/spacy Is giving you
trouble)

Step |: Tokenize & build vocabulary

'—------------- ------------------------------

‘Word index . Word ZD Fmbedding :

— 0 | this ii [0.57,044]
1| movie ! [038015]
______________________ 2 | rocks :i [-085070]
3 sucks i [026,066]

Step 3:

itep 2: Encode each review as a sequence of
word Indices into the vocab

“this movie sucks” —> 013

Use word embeddings to represent each word
[-0.57,0.44]
[0.38,0.15]

2026, 0.66]



Sentiment Analysis with IMDb Reviews

Demo



A special kind of RNIN:an “LSTM”



(Flashback) Vanilla ReLU RNN

current state = np.zeros(num nodes)
for input 1n 1nput sequence:

linear = np.dot(input, W) \
+ np.dot(current state, U) \
+ Db

output = np.maximum(®, linear) # RelLU

current state = output

Parameters: weight matrices W & U, and bias vector b

Key idea: it’s like a linear layer in a for loop that tracks how
memory changes over time



(Flashback) Vanilla ReLU RNN

current state = np.zeros(num_nodes)
outputs = []
for input 1n 1nput sequence:

linear = np.dot(input, W) \
+ np.dot(current state, U) \
+ D

output = np.maximum(®, linear) # RelU
outputs.append(output)

current _state = output



> > output prediction

Time series RNN layer



Time O

» output prediction 0

Time | > output prediction |

Time 2

> output prediction 2

K



> > outputt — |

Vanilla RNN tends to
forget things quickly

> v » output t

outputs|[t]

= np.maximum(Ap.dot (input sequence[t], W)
+ np.dot(outputs[t-1], U)
+ b, 0)

> > outputt + |




Add explicit long-term
memory!

> —7 > outputt — |

/ But need some way to
s update long-term
memory!

> —7 > outputt

> —7 > outputt + |




Add explicit long-term

memory!
> —7 > outputt — |
/ But need some way to
s update long-term
memory!
> — > output t




Timet

Add explicit long-term
memory!

— > outputt — |

But need some way to
update long-term
memory!

— > outputt



Timet

Long-term memory

/

Add explicit long-term

memory!

, W

Long-term memory
updater

V4

> outputt — |

But need some way to
update long-term

memory!

Called a "long short-term

memory’ (LSTM)

Remembers things

RNN

onger

than vanilla RNN

> outputt



Analyzing Times Series with CNNs

* Think about an image with | column, and where the rows index
time steps: this Is a time series!

* Think about a 2D image where rows index time steps, and the
columns index features: this Is a multivariate time series (feature
vector that changes over timel)

* CNNs can be used to analyze time series but inherently the size of
the filters used say how far back in time we look

* |f your time series does not have long-range dependencies that
require long-term memory, CNINs can do well already!

* |f you need long-term memory, use RNNs



Other Deep Learning Topics



Learning a Deep Net

Suppose the neural network has a single real number parameter w

$Loss L The skier wants to get to the lowest point
m The skier should move rightward (positive direction)
| w
' The derivative % at the skier's position Is negative

I
: tangent line
I
I

linrtial guess or~gQod
I '

. parameter setting
I

In general: the skier should move In opposite direction of derivative

In higher dimensions, this Is called gradient descent
(derivative in higher dimensions: gradient)

\4




Learning a Deep Net

Suppose the neural network has a single real number parameter w

4| oss L

NP,
\
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Learning a Deep Net

Suppose the neural network has a single real number parameter w

4| oss L

.
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Learning a Deep Net

Suppose the neural network has a single real number parameter w

4| oss L

\"‘:\

\4




Learning a Deep Net

Suppose the neural network has a single real number parameter w

4loss L
In general: not obvious what error landscape looks like!
-> we wouldn't know there’s a better solution beyond the hill
Popular optimizers Victor ,)
(e.g., Adam, RMSProp, A
L ookahead) are ®
variants of gradient ,
—  essesssssded >
descent ' ocal min
ocal minimum Rettor
In practice: local minimum often good enough solution
®

\4




Handwritten Digit Recognition

Overall loss:

Training label: 6 .
yi - Z L(f2(f1(x1)), )

v

fr (Xi) f2(f1 (X;))
> > >‘ Loss > error

L L(12(1(xi)), yi)

28x28 Image N
X f1 f2

el |
All parameters: # Gradient; O 2i- ggﬁ (X)), yi)

Automatic differentiation Is crucial in learning deep nets!

Careful derivative chain rule calculation: back-propagation



Gradient Descent

Training Training Training Training Training Training
example example example example example example
I p 3 4 5 n
I T R —
loss | loss 2 loss 3 loss 4 loss 5 -+ lossn
I l |
VWe have to compute lots average |oss Computing gradients using
of gradients to help the | all the training data seems
skier know where to go! compute gradient really expensivel

and move skier



Stochastic Gradient Descent (SGD)

Training Training Training Training Training Training

example example example example example [EEEM example
I 2 3 4 5 n

I T —

' ' ' ' ' '

loss | loss 2 loss 3 loss 4 loss5 - loss n

'

compute gradient
and move skier

SGD: compute gradient using only | training example at a time
(can think of this gradient as a noisy approximation of the “full’” gradient)
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I T —
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compute gradient
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(can think of this gradient as a noisy approximation of the “full’” gradient)
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Stochastic Gradient Descent (SGD)
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Stochastic Gradient Descent (SGD)

Training Training Training Training Training Training

example example example example example [EEEM example
I 2 3 4 5 n

I T —

' ' ' ' ' '

loss | loss 2 loss 3 loss 4 loss5 - loss n

'

compute gradient
and move skier

SGD: compute gradient using only | training example at a time
(can think of this gradient as a noisy approximation of the “full’” gradient)



Stochastic Gradient Descent (SGD)

Training Training Training Training Training Training

example example example example example [EEEM example
I 2 3 4 5 n

I T —

loss | loss 2 loss 3 loss 4 loss 5 -+ lossn
compute gradient An epoch refers to | full pass through
and move skier all the training data

SGD: compute gradient using only | training example at a time
(can think of this gradient as a noisy approximation of the “full’” gradient)



Minibatch Gradient Descent

Training Training Training Training Training Training
example example example example example [EEEM example
4 5 n
loss | loss 2 l0ss 3 loss 4 lossS  +++ lossn

!

average loss

'

compute gradient
and move skier



Minibatch Gradient Descent

Training Training Training Training Training Training
example example example example example [EEEM example
I n
loss | loss 2 l0ss 3 loss 4 lossS  +++ lossn

!

average loss

Batch size: how many l |
training examples we compute gradl|ent
consider at a time and move skier

(In this example: 2)



Best optimizer! Best learning rate! Best # of
epochs? Best batch size!

Active area of research
Depends on problem, data, hardware, etc

Example: even with a GPU, you can get slow learning (slower than
CPUD 1f you choose # epochs/batch size poorly!ll



Dealing with Small Datasets



Data Augmentation

Generate perturbed versions of your training data to get a larger
training dataset

)

Training Image Mirrored Rotated & translated
Training label: cat Still a cat! Still a cat!

We just turned | training example in 3 training examples

Allowable perturbations depend on data
(e.g., for handwritten digits, rotating by |80
degrees would be bad: confuse 6's and 9's)



Fine Tuning

It there's an existing pre-trained neural net, you could modify it for
your problem that has a small dataset

Example: classify between Tesla’s and Toyota’s

You collect photos from the internet of both, but your dataset size is
small, on the order of 1000 images

Strategy: take pre-trained convnet (such as the state-of-the-art ResNet) for
ImageNet classification and change final layers to do classification between
Tesla’'s and Toyota's instead of classifying 1000 objects



Fine Tuning

Sentiment analysis RNIN demo

---------

ER
- I C
o| &= Positive/negative
Text — |T|——> @ .
ext @ : e sentiment
E >
TH] -

Weights here are treated as fixed & come from
pre-trained GloVe word embeddings

GloVe vectors pre-trained on massive dataset (Wikipedia + Gigaword)

IMDDb review dataset 1s small in comparison



For more, check out the recording of
the Pittsburgh lecture next week!



Unstructured Data Analysis

Question Data Finding Structure Insights
The dead body The evidence Puzzle solving, When? Where?
' / /
Thisis provided  Some times you careful andysis Why? Fow
Perpetrator

by a practitioner have to collect Exploratory data

- %
more evidence! analysis catchable:

Answer original
question

There isn't always a follow-up prediction problem to solve




Some Parting Thoughts

Remember to visualize steps of your data analysis pipeline
* Helpful iIn debugging & interpreting intermediate/final outputs
Very often there are tons of models/design choices to try

« Come up with quantitative metrics that make sense for your
problem, and use these metrics to evaluate models (think about
how we chose hyperparameters!)

* But don't blindly rely on metrics without interpreting results in
the context of your original problem!

Often times you won't have labels! If you really want labels:

* Manually obtain labels (erther you do 1t or crowdsource)
* Set up “self-supervised’ learning task (in Prttsburgh last lecture)

There is a lot we did not cover — keep learning!



Want to Learn More!

| posted a Canvas announcement some days ago with follow-up
courses that are related to unstructured data analysis

* One of the best ways to learn material Is to teach It

Apply to be a TA for me next term!



