
Unstructured Data Analysis

George Chen

Lecture 13: Time series analysis with recurrent 
neural nets (RNNs), how learning a neural net 

works, dealing with small datasets, course wrap-up
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What if we had a video?
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Vanilla ReLU RNN

current_state = np.zeros(num_nodes)

for input in input_sequence:

linear = np.dot(input, W) \ 
         + np.dot(current_state, U) \ 
         + b

output = np.maximum(0, linear) # ReLU

Parameters: weight matrices W & U, and bias vector b

Key idea: it’s like a linear layer in a for loop that tracks how 
memory changes over time

memory that evolves over time; we want to learn how it changes

current_state = output

W is a 2D table: # rows: 
(length of single time step’s input), 

# cols: num_nodes

b is a 1D table: 
num_nodes entries

U is a 2D table: 
num_nodes by 
num_nodes
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like a linear layer 
that has memory

RNN layer

readily chains together with 
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ReLU

FlattenMax 
Pool 
2d actually, intermediate 

representations close 
to the last layer are 

also similar!

(intuition: recall the crumpled 
paper analogy!)
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Recurrent Neural Nets
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Conv2d, 
ReLU

Max 
Pool 
2d

Conv2d, 
ReLU

FlattenMax 
Pool 
2d

Same CNN applied to each frame separately
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Recurrent Neural Nets

RNN layer

Text Positive/negative 
sentiment

Example: Given text (e.g., movie review, Tweet), figure out whether it has 
positive or negative sentiment (binary classification)

Common first step for text: 
turn words into vector 
representations that are 
semantically meaningful

Cl
as

sifi
er



(Flashback) Do Data Actually Live on 
Manifolds?

Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/word-
embeddings-994x675.png



Recurrent Neural Nets

RNN layer

Text Positive/negative 
sentiment

Example: Given text (e.g., movie review, Tweet), figure out whether it has 
positive or negative sentiment (binary classification)

Common first step for text: 
turn words into vector 
representations that are 
semantically meaningful

In PyTorch, use the
Embedding layer

Em
be

dd
in

g

Cl
as

sifi
er

Linear layer (2 nodes), 
Softmax activation



Word index Word 2D Embedding
0 this [-0.57, 0.44]
1 movie [0.38, 0.15]
2 rocks [-0.85, 0.70]
3 sucks [-0.26, 0.66]

Sentiment Analysis with IMDb Reviews

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of 
word indices into the vocab

Word index Word
0 this
1 movie
2 rocks
3 sucks

“this movie rocks”

“this movie sucks”

0 1 2

0 1 3

“this sucks” 0 3

Ordering of words 
matters

Different reviews 
can have different 

lengths
Step 3: Use word embeddings to represent each word
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RNN’s work with variable-length inputs

Note: Often in text analysis, the word embeddings are treated as 
fixed, so we do not update them during training



What if we didn’t use word 
embeddings?



Word index Word 2D Embedding
0 this [-0.57, 0.44]
1 movie [0.38, 0.15]
2 rocks [-0.85, 0.70]
3 sucks [-0.26, 0.66]

Sentiment Analysis with IMDb Reviews

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of 
word indices into the vocab

Word index Word
0 this
1 movie
2 rocks
3 sucks

Step 3: Use word embeddings to represent each word
“this movie sucks”

[-0.57, 0.44]
[0.38, 0.15]
[-0.26, 0.66]

0 1 3



Word index Word One-hot encoding
0 this [1, 0, 0, 0]
1 movie [0, 1, 0, 0]
2 rocks [0, 0, 1, 0]
3 sucks [0, 0, 0, 1]

Bad Strategy: One-Hot Encoding

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of 
word indices into the vocab

Word index Word
0 this
1 movie
2 rocks
3 sucks

“this movie sucks”

[1, 0, 0, 0]
[0, 1, 0, 0]
[0, 0, 0, 1]

0 1 3
Step 3: Use one-hot encoding to represent each word

This strategy tends to work poorly in practice: 
distance between every pair of words is the same 

in one-hot encoding!



Recap/Important Reminder

• Neural nets are not doing magic; incorporating structure is very 
important to state-of-the-art deep learning systems

• Word embeddings encode semantic structure—words with 
similar meaning are mapped to nearby Euclidean points

• CNNs encode semantic structure for images—images that are 
“similar” are mapped to nearby Euclidean points

• An RNN tracks how what’s stored in memory changes over time 
— an RNN’s job is made easier if the memory is a semantically 
meaningful representation



Word index Word 2D Embedding
0 this [-0.57, 0.44]
1 movie [0.38, 0.15]
2 rocks [-0.85, 0.70]
3 sucks [-0.26, 0.66]

Sentiment Analysis with IMDb Reviews

Training reviews

Step 1: Tokenize & build vocabulary

Step 2: Encode each review as a sequence of 
word indices into the vocab

Word index Word
0 this
1 movie
2 rocks
3 sucks

Step 3: Use word embeddings to represent each word
“this movie sucks”

[-0.57, 0.44]
[0.38, 0.15]
[-0.26, 0.66]

0 1 3

In the demo, this part 
done by creating an 

instance of the 
SpacyEncoder Python 
class (torchnlp does 

support other encoders as 
well in case you don’t like 
spacy/spacy is giving you 

trouble)

embedding_weights (100-dimensional GloVe embeddings in the demo)



Sentiment Analysis with IMDb Reviews

Demo



A special kind of RNN: an “LSTM”



(Flashback) Vanilla ReLU RNN

current_state = np.zeros(num_nodes)

for input in input_sequence:

linear = np.dot(input, W) \ 
         + np.dot(current_state, U) \ 
         + b

output = np.maximum(0, linear) # ReLU

current_state = output

Parameters: weight matrices W & U, and bias vector b

Key idea: it’s like a linear layer in a for loop that tracks how 
memory changes over time



(Flashback) Vanilla ReLU RNN

for input in input_sequence:

linear = np.dot(input, W) \ 
         + np.dot(current_state, U) \ 
         + b

output = np.maximum(0, linear)  # ReLU

current_state = output

outputs = []

outputs.append(output)

current_state = np.zeros(num_nodes)



RNN layerTime series

output prediction



… …

Time 0

Time 1

Time 2

output prediction 1

output prediction 0

output prediction 2



… …

Time 
t − 1

Time t

Time 
t + 1

output t

output t − 1

output t + 1

outputs[t] 
= np.maximum(np.dot(input_sequence[t], W) 
             + np.dot(outputs[t-1], U) 
             + b, 0)

Vanilla RNN tends to 
forget things quickly

…
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Time 
t − 1

Time t

Time 
t + 1

output t

output t − 1

output t + 1

Long-term memory

… Add explicit long-term 
memory!

But need some way to 
update long-term 

memory!
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Time 
t − 1

Time t output t

output t − 1

Long-term memory

… Add explicit long-term 
memory!

But need some way to 
update long-term 

memory!

… …

Long-term memory 
updater

Called a “long short-term 
memory” (LSTM) RNN

Remembers things longer 
than vanilla RNN



Analyzing Times Series with CNNs

• Think about an image with 1 column, and where the rows index 
time steps: this is a time series!

• Think about a 2D image where rows index time steps, and the 
columns index features: this is a multivariate time series (feature 
vector that changes over time!)

• CNNs can be used to analyze time series but inherently the size of 
the filters used say how far back in time we look

• If your time series does not have long-range dependencies that 
require long-term memory, CNNs can do well already!

• If you need long-term memory, use RNNs



Other Deep Learning Topics



Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

tangent line

The skier should move rightward (positive direction)

initial guess of good 
parameter setting

The skier wants to get to the lowest point

∆L
∆w

The derivative       at the skier’s position is negative
∆w

∆L
∆w

In general: the skier should move in opposite direction of derivative
In higher dimensions, this is called gradient descent 
(derivative in higher dimensions: gradient)
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Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

Victory!

Local minimum Better 
solution

In general: not obvious what error landscape looks like!
➔ we wouldn’t know there’s a better solution beyond the hill

In practice: local minimum often good enough

Popular optimizers 
(e.g., Adam, RMSProp, 

Lookahead) are 
variants of gradient 

descent



Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

f1 f2

L

�All parameters:

Automatic differentiation is crucial in learning deep nets!

Careful derivative chain rule calculation: back-propagation

A neural net 
does function 
composition!

xi

yi

f1(xi ) f2(f1(xi ))

L(f2(f1(xi )), yi )

1
n

n∑

i=1

L(f2(f1(xi )), yi )

Overall loss:

Gradient: ∂
1
n

∑n
i=1 L(f2(f1(xi )), yi )

∂θ



Gradient Descent

Training 
example 

1

loss 1

Training 
example 

2

loss 2

Training 
example 

3

loss 3

…
Training 
example 

4

Training 
example 

5

Training 
example 

n

loss 4 loss 5 loss n…

average loss

compute gradient

We have to compute lots 
of gradients to help the 
skier know where to go!

Computing gradients using 
all the training data seems 

really expensive!
and move skier



Stochastic Gradient Descent (SGD)

compute gradient
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SGD: compute gradient using only 1 training example at a time 
(can think of this gradient as a noisy approximation of the “full” gradient)
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Stochastic Gradient Descent (SGD)

compute gradient
and move skier

SGD: compute gradient using only 1 training example at a time 
(can think of this gradient as a noisy approximation of the “full” gradient)

An epoch refers to 1 full pass through 
all the training data

Training 
example 

1

loss 1

Training 
example 

2

loss 2

Training 
example 

3

loss 3

…
Training 
example 

4

Training 
example 

5

Training 
example 

n

loss 4 loss 5 loss n…



Minibatch Gradient Descent

average loss

compute gradient 
and move skier
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loss 2
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Minibatch Gradient Descent

average loss

compute gradient 
and move skier

Batch size: how many 
training examples we 

consider at a time 
(in this example: 2)

Training 
example 

1

loss 1

Training 
example 

2

loss 2

Training 
example 

3

loss 3

…
Training 
example 

4

Training 
example 

5

Training 
example 

n

loss 4 loss 5 loss n…



Best optimizer? Best learning rate? Best # of 
epochs? Best batch size?

Active area of research

Depends on problem, data, hardware, etc

Example: even with a GPU, you can get slow learning (slower than 
CPU!) if you choose # epochs/batch size poorly!!!



Dealing with Small Datasets



Data Augmentation
Generate perturbed versions of your training data to get a larger 

training dataset

Training label: cat
Training image Mirrored

Still a cat!
Rotated & translated

Still a cat!

We just turned 1 training example in 3 training examples

Allowable perturbations depend on data 
(e.g., for handwritten digits, rotating by 180 
degrees would be bad: confuse 6’s and 9’s)



Fine Tuning
If there’s an existing pre-trained neural net, you could modify it for 

your problem that has a small dataset

Example: classify between Tesla’s and Toyota’s

You collect photos from the internet of both, but your dataset size is 
small, on the order of 1000 images

Strategy: take pre-trained convnet (such as the state-of-the-art ResNet) for 
ImageNet classification and change final layers to do classification between 

Tesla’s and Toyota’s instead of classifying 1000 objects



Fine Tuning

Sentiment analysis RNN demo

Text Positive/negative 
sentiment

Em
be

dd
in

g

Cl
as

sifi
er

Weights here are treated as fixed & come from 
pre-trained GloVe word embeddings

GloVe vectors pre-trained on massive dataset (Wikipedia + Gigaword)
IMDb review dataset is small in comparison



For more, check out the recording of 
the Pittsburgh lecture next week!



Unstructured Data Analysis

Data

The dead body

Some times you 
have to collect 
more evidence!

Finding Structure InsightsQuestion

When? Where? 
Why? How? 
Perpetrator 
catchable?

Puzzle solving, 
careful analysis

The evidence

This is provided 
by a practitioner Exploratory data 

analysis
Answer original 

question

There isn’t always a follow-up prediction problem to solve



Some Parting Thoughts
• Remember to visualize steps of your data analysis pipeline

• Very often there are tons of models/design choices to try
• Come up with quantitative metrics that make sense for your 

problem, and use these metrics to evaluate models (think about 
how we chose hyperparameters!)

• Often times you won’t have labels! If you really want labels:
• Manually obtain labels (either you do it or crowdsource)
• Set up “self-supervised” learning task (in Pittsburgh last lecture)

• Helpful in debugging & interpreting intermediate/final outputs

• But don’t blindly rely on metrics without interpreting results in 
the context of your original problem!

• There is a lot we did not cover — keep learning!



Want to Learn More?

• One of the best ways to learn material is to teach it!
Apply to be a TA for me next term!

• I posted a Canvas announcement some days ago with follow-up 
courses that are related to unstructured data analysis


